Numerical study of induction heating by micro / nano magnetic particles in hyperthermia
Authors
Abstract:
Hyperthermia is one of the first applications of nanotechnology in medicine by using micro/nano magnetic particles that act based on the heat of ferric oxide nanoparticles or quantum dots in an external alternating magnetic field. In this study, a two-dimensional model of body and tumor tissues embedded is considered. Initially, the temperature distribution is obtained with respect to tumor properties and without the presence of an electromagnetic field. Then, the effect of the electromagnetic field on the temperature distribution is studied. The results are compared with those of other papers. The results indicate that the use of the electromagnetic field causes a significant rise in the tumor temperature; however, the risk of damage to the healthy tissues surrounding the cancerous tissue seems to be high. Then, the micro/nanoparticles are injected into the tumor tissue to focus energy on cancerous tissue and maximally transfer the heat onto the tissue. The temperature distribution in the state is compared with the case with no nanoparticles and other numerical works. The results demonstrate that with the injection of nanoparticles into the tumor, the maximum temperature location is transferred to the center of the tumor and also increases to 6°C. After determining the temperature distribution in the presence of nanoparticles, the effects of different variables of the problem are studied. According to the obtained results, the increase in the concentration and radius of nanoparticles have a positive effect on the temperature distribution in the tissue; on the other hand, the increase in the frequency and size of the electrodes have a negative effect. The relevant equations are solved numerically using the finite difference method.
similar resources
synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants
we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.
15 صفحه اولSimulation of tissue heating by magnetic fluid hyperthermia
Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....
full textA numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
full textA numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
full texta numerical study on reinforced composites by spherical nano-particles
in the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
full textEthylbenzene Removal from Aqueous Solutions by Nano Magnetic Particles
Background and Objectives : Ethylbenzene (EB) is a dangerously organic compound which the presence of this pollutant in water solutions can be considered as an environmental and public health hazard. In this study, nano magnetic particles (Fe 3 O 4 ) were used as an adsorbent to remove ethylbenzene from aqueous solutions. Methods : The specification of the adsorbent was investigated by transmis...
full textMy Resources
Journal title
volume 9 issue 2
pages 259- 273
publication date 2020-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023